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Abstract

Estimation of motion has many applications in fluid analysis. Lots of work
has been carried out using Particle Image Velocimetry to design experiments
which capture and measure the flow motion using 2D images. Recent
technological advances allow capturing 3D PIV image sequences of moving
particles. In this context, we propose a new three-dimensional variational
(energy-based) technique. Our technique is based on solenoidal projection to
take into account the incompressibility of the real flow. It uses the result of
standard flow motion estimation techniques like iterative cross-correlation or
pyramidal optical flow as an initialization, and improves significantly their
accuracies. The performance of the proposed technique is measured and
illustrated using numerical simulations.

1 Introduction
”Particle Image Velocimetry (PIV) is a technique which allows one to record images of
large parts of flow fields in a variety of applications in gaseous and liquid media and
to extract the velocity information out of these images” [7]. The typical setting of a
PIV experiment consists in the following components: the flow medium seeded with
particles, droplets or bubbles, a double pulsed laser which illuminates the particles twice
with a short time difference, a light sheet optics guiding a thin light plane within the
flow medium, one or several CCD cameras which capture the two frames exposed by
the laser pulses and a timing controller synchronizing the laser and the camera. Once
the flow motion has been captured, software tools are needed to evaluate and display the
flow motion. The standard techniques work in a planar domain (2D-PIV), permitting
estimation of the 2 planar components of the fluid motion (2C-PIV). The third spatial
component can also be extracted using stereo techniques, dual-plane PIV or holographic
recording (3C-PIV) [5]. The extension of the observation to a volume (3D-PIV) is
currently an active area of research. To this end, multicamera configuration or holographic
techniques (see [8]) has been proposed.

In this paper, we propose a technique for 3D fluid motion estimation applied to 3D-
PIV. The most widely used technique for motion estimation in 2D-PIV is based on local
correlation between two rectangular regions of the two images (see for instance [9]). This



technique has a straightforward extension to 3D images. Another approach to motion
estimation widely used in optical flow is a variational approach based on an energy
minimization where on the one hand, we assume the conservation of the intensity of the
displaced objects (in our case the particles) and on the other hand, we assume a certain
regularity of the obtained flow. A variational approach was proposed in [4] in the context
of 2D PIV. We propose to compare and combine both approaches in order to improve the
accuracy of the flow estimation. The proposed method is very general and can be used in
many applications of 3D flow estimation.

In the particular case of incompressible fluid motion, we have designed a method to
include the incompressibility constraint in the flow estimation.

The paper is organized as follows: in section 2, we briefly describe the motion
estimation using local cross-correlation; in section 3, we describe our variational approach
and the solenoidal projection; in section 4, we present the numerical experiments followed
by the conclusion.

2 Motion estimation using local cross-correlation
Cross-correlation is the most common technique for fluid motion estimation in PIV and
is described, for instance, in [7]. We will denote I1 and I2 the two images from which we
compute the motion u, N the image dimension (in our case N = 3) and Ω the domain of
definition of the images.

2.1 Basic principle
Having the two volumes I1 and I2, for each voxel v = (vx,vy,vz) of I1, the method takes
a rectangular subvolume I1,v of I1 centered on v, and looks for a similar subvolume of
I2 centered on a neighbor v + d of v. The similarity measure between two rectangular
subvolumes of the same dimensions is based on 2D cross-correlation and is defined as:

Cv(I1, I2)(d) =
(a,b,c)

∑
y=(−a,−b,−c)

I1(v+y) I2(v+d+y) (1)

The voxel v is assigned the displacement d which gives the maximal value of the cross-
correlation. Doing this for every voxel in I1 we obtain a complete vector field u.

2.2 Implementation using Fast Fourier Transform
Because the process of computing the cross-correlation for many subvolumes of I2 and for
each voxel is computationally heavy, the implementation takes advantage of the properties
of the Fourier transform to improve the processing time. The Fourier transform has the
property that a correlation in the spatial domain is equivalent to a multiplication in the
Fourier domain.

Cv(I1, I2) = F−1(Î1,v Î2,v
∗
), (2)



where I1,v is a rectangular subvolume of I1 centered on the voxel v, Î1,v is the Fourier
Transform of the subvolume I1,v, the operator ∗ denotes the complex conjugate, and
F−1 denotes the inverse Fourier transform. The image Cv(I1, I2)(d) gives the result
of cross-correlation for all displacements d and the maximal value is a best estimate
of the local displacement. Because of the hypothesis of periodicity introduced by the
Fourier Transform, the window is usually chosen four times bigger than the expected
displacement. The method is then extended to allow subvoxel accuracy by means of local
interpolation of a Gaussian function close to the discrete maximum. When the correlation
has been computed for every voxel, some kind of data validation procedure is needed to
remove outliers.

Actually, we do not have to compute the correlation for each voxel, we can calculate
the flow only for the voxels located on a given lattice. At the end of the process, we
extrapolate the results and obtain a dense vector field. This improves not only the speed
of the computation, but also in some cases the quality of the results because of the
regularization induced by the extrapolation.

The whole process should be applied iteratively a few times using the current result
as an initialization for the next iteration. The iterative process can be initialized with a
null vector field u0 = 0, and un+1 can be estimated at each voxel of the lattice using the
displacement with maximal correlation for a window of I2 displaced by un:

Cv(I1, I2,un) = F−1(Î1,v ̂I2,v+un(v)
∗
), (3)

By doing this, we can improve the accuracy of the fluid motion estimation. It also permits
the progressive reduction of the size of the correlation window.

3 Variational Approach
Variational approach to motion estimation are often used for optical flow computation
[6, 3, 2]. It consists in minimizing an energy as a function of the displacement and that
depends on a pair of images I1 and I2.

In this section, E will denote the energy functional to minimize. For a given
3D vector field u = (ux,uy,uz)t , the norm of its gradient ‖ ∇u ‖ is defined as√
‖ ∇ux ‖2 + ‖ ∇uy ‖2 + ‖ ∇uz ‖2, and the Laplacian ∆u = div(∇u) is defined as

(∆ux,∆uy,∆uz)t .
The energy to minimize is expressed as :

E(u) =
∫

Ω

(I1(x)− I2 (x+u(x)))2 dx︸ ︷︷ ︸
data term

+α

∫
Ω

‖∇u(x)‖2dx︸ ︷︷ ︸
regularization term

, (4)

where α is a scalar coefficient that weights the smoothing term. Under the assumption of
intensity conservation for each voxel, the first term (data term) becomes zero when the
first image matches the second one displaced by u: I1(x) = I2(x + u(x)). This term tries
to find the vector field that best fits the solution. The second term is a regularization term
which smoothes the vector field. There are a lot of ways to define the regularization term,
including, for instance, discontinuities preserving constraints, etc.. In this paper, since
we deal with rather smooth flows we use the L2 norm presented above. Euler-Lagrange



equations yield:

(I1(x)− I2(x+u)).∇I2(x+u)+αdiv(∇u) = 0 (5)

The coefficient α is normalized to allow invariance under global intensity change. To
this purpose, α is multiplied by

α = α0

(
ε +

√
1
|Ω|

∫
Ω

‖∇I2(x)‖2dx

)2

(6)

with ε = 0.01.

3.1 Numerical scheme
We propose to look for the minimum of the energy by solving (5) directly using a fixed
point approach. An alternative is to use a gradient descent with either explicit or semi-
implicit scheme. We use an iterative method to find the vector field u:{

u0 = u0
un+1 = un +hn+1 (7)

where we update the vector field u at each iteration by adding another vector field h
with small displacements. The displacement h being small, we can use first order Taylor
expansions of I2 and ∇I2 at x+un to linearize (5), and we obtain:

dg−
[
ggt −dH ′]h+αdiv(∇un +∇h) = 0 (8)

denoting:

g(x) = ∇I2(x+un) (9)
d(x) = I1(x)− I2(x+un) (10)

H ′(x) = H(I2)(x+un). (11)

In the last equality, H(I2)(x) denotes the Hessian matrix of I2 at the location x. The term
in second order spatial derivatives is usually neglected, supposing that the image varies
slowly. Then, (8) becomes:

dg+αdiv(∇un)−ggth+αdiv(∇h) = 0 (12)

After discretization using finite differences, the operator div(∇h) can be divided in
two terms −2N I h and S(h), where the N is the image dimension and I is the identity
matrix. The first term only depends on values of h at the current position x and the second
term only depends on values of h at neighbor positions of x: the vector S(h) is written:

S(h) =

 ∑y∈N∗(x) hx(y)
∑y∈N∗(x) hy(y)
∑y∈N∗(x) hz(y)

 , (13)

where N∗(x) denotes the direct neighbors of x (4 in 2D and 6 in 3D), and h = (hx,hy,hz)t .



Using hn+1 for the current location x and hn for its neighbors, (12) becomes:

Ahn+1 = b (14)

with A = ggt +α2N I, and b = dg+αdiv(∇un)+S(hn). The matrix A is real, symmetric
and positive definite, so it can be inverted and we can compute for each position x,
hn+1 = A−1b. To improve the convergence rate, we use a Gauss-Seidel method which
updates the displacement hn+1 at position x using the values of hn+1 already calculated.
This scheme is recursive and to avoid privileging the direction of scanning the image, we
apply two successive iterations of Gauss-Seidel in reverse directions. Furthermore, we
use a pyramidal approach to compute the displacement flow at several scales, using the
results from a given scale to initialize to the following higher scale.

4 Refined variational approach
We introduce two modifications to equation (4) to improve the solution. First, the
regularization term is applied to the increment of the displacement vector h at each
iteration instead of the whole vector u. It allows the minimization to be invariant
under the solution: if the data term is zero, no smoothing will be applied. This change
implies removing the term αdiv(∇un) from equation (12) while using the same numerical
scheme. Second, we replace the solution by its solenoidal projection and re-iterate the
minimization to take into account the incompressibility of the flow. This refinement step
will use only one scale since it is initialized by the solution of one of the previous methods
described in sections 2 or 3. The following paragraph describes the solenoidal projection.

4.1 Solenoidal projection
In our experiments, the fluid flows are incompressible. As a consequence, the
displacement vector field u should be divergence-free, i.e. div(u) = ∂ux

∂x + ∂uy

∂y + ∂uz

∂ z = 0.
One way to fulfill this constraint is to project our estimated motion u into the space of
divergence-free vector field. This new vector field us is called a solenoidal projection of
u. It can be expressed as:

us = u−∇v, (15)

where v is a scalar function of Ω ⊂ R3, defined as a solution to the following Poisson’s
equation: {

div(∇v) = div(u) in Ω

v = 0 in ∂Ω
(16)

This equation is solved using Gauss-Seidel technique.

5 Experiments and Results
In this section, we present experiments on synthetic data using both methods (correlation
and variational). We used a 3D flow based on realistic flow models to check the
performance of the proposed methods. In these experiments, we first apply the standard
correlation or variational methods to obtain a good approximation of the flow and then
we refine the results with the new variational approach.



5.1 Choice of the parameters
The cross-correlation parameters are the window size in each dimension and the lattice
spacing. The window size is approximately set to four times the expected maximal
displacement and is the same in each dimension. In the following experiments, we use a
lattice spacing of 2 voxels in each dimension, and the final result is interpolated to obtain
a dense estimation. The variational approach uses the parameters α and the number of
scales for the pyramidal approach. In the following experiments, we use set α to 0.5 for
both the standard and the refined variational approaches.

5.2 Description of the models
In the first model (Figure 1, left), we use an incompressible 3D flow model suggested to
us by Professor F. Scarano that can be found in [11] (section 3-9.2). It corresponds to the
Stokes’s solution for an immersed sphere. The flow moves in the horizontal axis direction
with a velocity (U,0,0), and it avoids the sphere located at the center of the volume. The
flow inside the sphere is null.

Figure 1: Left, model 1 (sphere). Right, model 2 (cylinder)

Having a sphere with radius α and center (0,0,0), and a 3D point (x,y,z) at a distance
r from the sphere center, the flow outside the sphere follows:

u = U
(

1− 3α

4r3 (2x2 + y2 + z2)+
α3

4r5 (2x2 − y2 − z2)
)

v = U
(
− 3α

4r3 xy+
3α3

4r5 xy
)

(17)

w = U
(
− 3α

4r3 xz+
3α3

4r5 xz
)

The other model (Fig. 1, right) was provided to us by the CEMAGREF and it has been
obtained using a Large Eddy Simulation of the incompressible Navier-Stokes equations
which defines the turbulent motion after a cylinder. It simulates a volume with synthetic
particles following the horizontal axis and a cylinder situated on the z-axis obstructing
the flow perpendicularly. We use two successive images from this sequence. The original
model is a volume of 960 x 960 x 144 voxels but we limit our experiment to a window of



256 x 64 x 64 voxels to reduce the computation time. This window includes part of the
cylinder and the turbulence behind it.

5.3 Experiments with model 1 (sphere)

Figure 2: Left, real flow (with zoom). Right, final error distribution (combined scheme).

Corr. Corr.+Ref. Var. Var.+Ref.
av. error 0.029 0.0135 0.03164 0.01702
std. dev. 0.0296 0.0153 0.03033 0.02756

Table 1: Comparison of the two methods for model 1.

Table 1 shows the average error and the standard deviation reached for the cross-
correlation and the variational methods before and after the refinement. The correlation
was applied 11 times with a window size of 8 voxels. The individual variational approach
was applied using α = 0.5 and 3 scales. The mean error is approximately divided by
two after applying the refined variational approach, and the initialization with correlation
gives a better result than the initialization with a variational approach. Figure 2 (right)
shows the final average error distribution using the cross-correlation followed by the
refined variational approach. We can observe that the highest error is located at the sphere
boundaries.

The left curve in Figure 3 displays the average error evolution using the combined
scheme. First, we apply 11 iterations of correlation technique (we observe that the
correlation reaches a stable average error after 11 iterations). Next, we use the output
flow provided by the correlation as the input flow of the refined variational technique
(curve after iteration 11). We observe a significative improvement in the flow estimation
error after using the proposed refined variational method.

5.4 Experiments with model 2 (cylinder)
We ran the same experiments for this model. Table 2 shows the average error and standard
deviation reached for the cross-correlation and the variational methods before and after



Figure 3: Left, average error evolution using the combined scheme (11 times cross-
correlation + variational).

Corr. Corr.+Ref. Var. Var.+Ref.
av. error 0.1670 0.0651 0.1579 0.0763
std. dev. 0.1375 0.0729 0.1461 0.0891

Table 2: Comparison of the two methods for model 2.

the refinement. The correlation was applied 6 times with a sequence of different window
sizes: 16, 16, 8, 8, 4, 4. The variational approach was applied using α = 0.5 and 3
scales. Finally, the refined variational method was applied with α = 0.5 and one scale.
In this experiment, the variational and the correlation correlation methods alone reach
similar accuracies, and after the refinement, the cross-correlation reaches a slightly better
result. In both cases, the new refined variational approach reduces the mean and standard
deviation of the error by at least 50%. Figure 4 (bottom) shows the final average error
distribution using the combination of the cross-correlation and the refined variational
schemes. As in the previous model, the highest error is also located at the obstacle
boundaries.

The curve in Figure 5 displays the average error evolution using the combined scheme
of correlation and refined variational approaches. It shows that the correlation reaches
a stable average error after 6 iterations and that an additional iteration of the proposed
variational approach reduces considerably the mean error.

6 Conclusion
In this paper, we presented an improvement to a standard variational 3D flow estimation
technique based based on soleinodal projections and a more flexible smoothing term. The
proposed refined variational optical flow technique is initialized by standard techniques
like cross-correlation or standard 3D optical flow. We have implemented these techniques
and we have shown in the numerical experiments that the proposed technique improves
the accuracy of the flow estimation and reduces the mean error by at least half. Slightly
better results were obtained by the initialization from cross-correlation, which is probably
due to the smoothing term of the standard variational approach that cannot deal with



Figure 4: Top, real flow. Bottom, final error distribution (combined scheme).

discontinuities.
Although we focused our attention to 3D fluid flow analysis, the proposed

methodology is very general and can be applied to different application fields. Correlation
based techniques and energy minimization techniques have been developed in the research
community in a completely independent way. Each one has its own advantages and
limitations but we think that an adequate combination of both can improve the global
estimation of the flow. On the other hand, we think that including physical 3D flow
constraints, as for instance the incompressibility, to the 3D flow estimation, is a very
important issue and allows combining the mathematical models of fluid motion with the
experimental data.

In future work, we plan to investigate other regularization terms as proposed in
[10, 1]. We also plan to compare our current method with approaches which include
an incompressibility constraint within the variational formulation [4, 12].
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